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Abstract. The paper attempts to develop some understanding of the interaction between viscous flow and a free
surface by analysing the unsteady flow in an idealised two-dimensional rectangular tank. The mathematical model
used is based on the linearized Navier-Stokes equations which are solved by use of the Laplace transform. Various
results are provided to show the effect of viscosity on the free surface waves.
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1. Introduction

Water waves are primarily dominated by gravity and in the absence of solid boundaries viscos-
ity usually has very little effect on the flow over a short period in time or over a short distance
in space [1, Section 3.5]. In other words, the effects of viscosity may become important only
after many wave periods or after many wavelengths. It is quite common, therefore, that free-
surface flows associated with water waves are analysed by the velocity potential theory. The
problem becomes somewhat different when a wave encounters a body in its path, because of
the sheared flow created by the body surface. But even in that case it is usually a common
practice to deal with the free-surface effects and viscous effects separately. A typical example
is linear wave interaction with an offshore structure. The interaction between the wave and the
body can be analysed by either wave-diffraction theory without viscosity or by viscous-flow
theory without the free-surface effect, depending on the ratios of the characteristic dimension
of the body to the wavelength and the wave amplitude [2].

Cases, however, do arise where the combined effect of the free surface and viscosity is
important, some of which have been highlighted by Yeung and Yu [3]. A noteworthy case is
the flow near the waterline of a floating body,i.e., at the intersection of the body surface and the
free surface. Another example is the free surface flow of highly viscous fluid. The purpose of
the present analysis is to derive some understanding of how the free surface interacts with the
viscosity by considering a geometrically simple fluid domain, an idealised two-dimensional
rectangular tank. As a starting point, common in potential flow analysis, it is assumed that
disturbance of the fluid is small and the flow is governed by the linearized Navier-Stokes (NS)
equations. The justification and limitations of such an approximation have been discussed by
Mei [4, Chapter 8]. The analysis there is, however, based on the framework of boundary-layer
theory. Here the viscous effect is taken into account in the entire fluid domain.

One difficulty in combined free-surface and viscous analysis lies at the intersection of the
body surface and the free surface. Take a fixed body as an example: the no-slip condition in
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the NS equations suggests that the fluid particle there should remain stationary, but it can be
observed experimentally that fluid moves up and down along the body surface. This difficulty
was in fact mentioned by Lamb [5, Article 327], and resolving it requires extensive experi-
mental study such as that undertaken in [6]. Our current understanding of the flow structure
near the intersection is still limited and many methods used to deal with the intersection are
not entirely satisfactory. A commonly used scheme for water wave/structure interaction is
based on two steps: (1) the NS equations are solved with the no-slip condition imposed on
the body surface and (2) the motion of the intersection point is tracked through interpolation
from the points on the free surface and near the intersection. This procedure has some clear
defects. To ensure the result from the interpolation is accurate enough, the points used must
be as close as possible to the intersection. However, if these points are sufficiently close to the
body surface (for example when an extremely fine mesh is used in this region), the result will
be the same as that based on the no-slip condition. Because of this difficulty, the analysis in
this work remains modest. The no-slip condition on the body is replaced by a no-shear-force
condition. The intention here is to show how the free surface will interact with the viscous
flow, and results based on this model would be useful for this purpose. Indeed it was argued
in [7] that the condition on the side walls may have little effect on the wave when analysing
Faraday’s instability. Furthermore, the equivalent of a zero shear force condition on the side
walls was also used by Loh and Rasmussen [8], who solved the full Navier-Stokes equations
for this problem based on the finite-difference method. The present analytical solution of the
flow in an oscillating tank therefore has an additional use for validation purposes. Having said
that, it should be noted that we cannot justify the condition used on the body surface yet.
Whether the solution obtained reflects the physical reality is not entirely clear. Tentatively, it
appears that the solution may be more physical at low Reynolds number than at high Reynolds
number, because in the latter case, the effect of shear stresses may be more important on the
body surface than in the fluid domain.

2. Mathematical formulation

We consider the problem of viscous fluid flow in a rectangular tank of lengthl. A Cartesian
coordinate systemO − xz is defined so that its origin is located at the centre of the mean free
surface andz points upwards. When the disturbance to the liquid is small, its motion may be
described by the following linearised Navier-Stokes and continuity equations

∂u

∂t
= −1

ρ

∂p

∂x
+ ν∇2u,

∂w

∂t
= −1

ρ

∂p

∂z
+ ν∇2w,

∂u

∂x
+ ∂w
∂z
= 0, (1a,b,c)

whereu andw are the velocity components in thex andz directions respectively,p is the
pressure,ρ is the density andν is the kinematic viscosity. In Equation (1b) the term due to
gravity has been included in the pressure.

On the mean free surfacez = 0, the boundary conditions can be written as [4]

ηt = w, p/ρ = gη + 2νwz, uz + wx = 0, (2a,b,c)

whereη is the wave elevation,g is the acceleration due to gravity and all the subscripts indicate
derivatives.

On the solid boundary, we adopt the condition which assumes that the normal velocity
components of the fluid particle and the body surface are the same and the frictional force is
zero. It follows that
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u = U0(t), uz + wx = 0 at x = ±l/2, (3a)

w = W0(t), uz + wx = 0 at (z = −d) (3b)

whereU0 andW0 are the horizontal and vertical velocity components of the tank. In this
analysis, we assume that motion starts smoothly, which meansU0(0) = W0(0) = 0.

We now introduce

u = φx − ψz, w = φz + ψx, (4a,b)

which in fact impliesp = −ρ∂φ/∂t . The governing equations in (1) become [5, Article 349]

∇2φ = 0, ψt = ν∇2ψ (5a,b)

in the fluid domain, and the boundary conditions in (2) and (3) become

ψxx − ψzz + 2φxz = 0, φtt + g(φz + ψx)+ 2ν(φzzt + ψxzt) = 0 (6a,b)

on z = 0, and

φx = U0, ψ = 0 at x = ±l/2 (7a)

φz = W0, ψ = 0 at z = −d. (7b)

3. Solution procedure

We now introduce the Laplace transform with respect to time:

f ∗(λ) =
∫ ∞

0
f (t) e−λt dt. (8)

Equations (5–7) then become

∇2φ∗ = 0, λψ∗ = ν∇2ψ∗ (9a,b)

in the fluid domain,

ψ∗xx − ψ∗zz + 2φ∗xz = 0, λ2φ∗ + g(φ∗z + ψ∗x )+ 2λν(φ∗zz + ψ∗xz) = −gη0 (10a,b)

on z = 0, whereη0 is the initial wave elevation, and

φ∗x = U ∗0 , ψ∗ = 0 at x = ±l/2 (11a)

φ∗z = W ∗0 , ψ∗ = 0 at z = −d. (11b)

Equations (9) and (11) clearly allow us to write

φ∗ = U ∗0x +W ∗0 z+
∞∑
n=1

An
coshkn(z+ d)

coshknd
coskn(x + l/2), (12a)

ψ∗ =
∞∑
n=1

Bn
sinh αn(z+ d)

coshαnd
sin kn(x + l/2), (12b)
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where

kn = nπ/l, αn =
√
k2
n + λ/ν. (13a,b)

Substituting Equations (12) in (10) we obtain

2k2
n tanh(knd)An + (α2

n + k2
n) tanh(αnd)Bn = 0, (14a)

(λ2+ kng tanhknd + 2νλk2
n)An + (kng tanhαnd + 2νknαnλ)Bn = −an, (14b)

where

an = 2

l

∫ l/2

−l/2
(gη0+ λ2U ∗0x + gW ∗0 ) coskn(x + l/2) dx

= −2λ2U ∗0
lk2
n

[1− (−1)n] + 2g

l

∫ l/2

−l/2
η0 coskn(x + l/2) dx.

(15)

The solution of Equations (14) can be found as

An = an α
2
n + k2

n

Cn
tanhαnd, Bn = −an2k2

n

Cn
tanhknd (16a,b)

where

Cn = 2k2
n tanhknd(kng tanhαnd + 2νknαnλ)

−(α2
n + k2

n) tanhαnd(λ2+ kng tanhknd + 2νk2
nλ)

= −λ/ν[λ2 tanhαnd + 4k2
nνλ tanhαnd + gkn tanhαnd tanhknd

+4ν2k3
n(kn tanhαnd − αn tanhknd)].

(17)

Thus

φ = U0x +W0z+ 1

2π i

∞∑
n=1

∫
0

α2
n + k2

n

Cn
an tanhαndeλt dλ

coshkn(z+ d)
coshknd

coskn(x + l/2),
(18a)

ψ = − 1

2π i

∞∑
n=1

∫
0

2k2
nan

Cn

sinhαn(z+ d)
coshαnd

eλt dλ tanhknd sin kn(x + l/2), (18b)

where the integration path0 is taken so that all the poles of the integrand are on its left hand
side.

The wave elevation can be obtained from

η = 1

g
[−φt − 2ν(φzz + ψxz)]z=0

= −x
g

dU0

dt
+ 1

2π ig

∞∑
n=1

∫
0

−(α2
n + k2

n) tanhαnd(λ+ 2νk2
n)+ 4νk3

nαn tanhknd

Cn
ane

λt dλ

× coskn(x + l/2).
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Since

−(α2
n + k2

n) tanhαnd(λ+ 2νk2
n)+ 4νk3

nαn tanhknd

= 1

λ
(Cn + λgkn tanhknd tanhαnd/ν),

we have

η = −x
g

dU0

dt
+ 1

2π ig

∫
0

eλt

λ

∞∑
n=1

an coskn(x + l/2) dλ

+ 1

2π iν

∞∑
n=1

kn tanhknd
∫
0

an tanhαnd

Cn
eλtdλ coskn(x + l/2).

Equation (15) shows thatan are the coefficients of the cosine series ofgη0+ λ2U ∗0x. Thus

η = −x
g

dU0

dt
+ 1

2π ig

∫
0

eλt

λ
(gη0+ λ2U ∗0x) dλ

+ 1

2π iν

∞∑
n=1

kn tanhknd
∫
0

an tanhαnd

Cn
eλt dλ coskn(x + l/2)

= η0+ 1

2π iν

∞∑
n=1

kn tanhknd
∫
0

an tanhαnd

Cn
eλt dλ coskn(x + l/2)

(19)

One point worth noting is that this equation with (15) shows that the wave elevation does not
depend on the vertical motion of the tank. This is a result of linearisation. In fact, it is known
that the free surface wave generated by the vertical motion is not always stable. The instability
of this so-called Faraday wave can be captured by the potential flow when the product term
of the vertical acceleration with the surface elevation is included in the linear analysis [9].
The effect of viscosity on the stability was recently investigated by Cerda and Tirapegui [7].
Faraday waves, however, are beyond the main interest of the present work.

4. Results

4.1. A STATIONARY TANK

We first consider the case of a stationary tank with an initial wave elevation. Let

η0 = a cosk2(x + l/2), (20)

wherek2 is given in Equation (13a). The solution for this case based on both the linearized
and the second order potential flow theory has been given by Wu and Eatock Taylor [10]. Here
Equation (15) gives

n = 2 : an = ga; n 6= 2 : an = 0 (21)

and Equation (19) becomes
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Figure 1. Decay of wave elevation at different Reynolds numbers.

η = η0+ η0gk2 tanhk2d

2πνi

∫
0

tanhα2d

C2
eλt dλ. (22)

From Equation (17), the only zero ofC2 which can be found analytically isλ = 0. Other
zeros have to be found numerically in the complex plane. This makes the direct application
of the Cauchy theorem difficult. In the following analysis for finite water depth, the results
are obtained by numerical integration of Equation (22) along a vertical line withRe(λ) > 0,
based on the trapezoidal method. There is no particular difficulty in the computation provided
a sufficiently small step is used, so that its further reduction will not lead to graphically visible
differences. Generally the step depends ont and the largert is, the smaller the step should
be. But this does not cause any real computational problem as each calculation takes only a
few seconds. Figure 1 gives results for the wave elevationζ = η/a at x = 0 against time
τ = t√g/d at different Reynolds number, defined as Re= d√gd/ν, in a tank withl = 2d.
The figure clearly shows that the wave will decay to zero straight away at lower Reynolds
number and oscillate with decaying amplitude at higher Reynolds number, which agrees with
the physics of the problem.

An alternative approach is possible if the water is sufficiently deep,k2d → ∞. It may be
shown that in the limit:

tanhk2d → 1; tanhα2d → 1.

The latter limit holds even whenα2d is complex, as long asRe(α2) 6= 0. Under these
conditions Equation (17) yields:

C2 = 2k2
2(k2g + 2νk2α2λ)− (α2

2 + k2
2)(λ

2+ gk2+ 2νk2
2λ).

It is convenient to define the following dimensionless parameters:



The effect of viscosity on the transient free-surface waves in a two-dimensional tank83

κ = g

ν2k3
2

; σ = λ

νk2
2

.

The expression for the wave elevation, Equation (22), can then be written in the form:

η(t)

η0
= 1− κ

2π i

∫
0

eσνk
2
2t dσ

σ [(σ + 2)2 − 4(σ + 1)
1
2 + κ] . (23)

Thus

η(t)

η0
= 1− κe−νk

2
2t f (νk2

2t), (24)

wheref (t) is the inverse Laplace transform of the function

F(s) = 1

(s − 1)[(s + 1)2− 4s
1
2 + κ] . (25)

We have here replaced(σ + 1) by s, thereby introducing the term e−νk2
2t in Equation (24).

It may be shown that, providedκ > 0·5814122 (see the appendix), the function in the
square brackets may be written in partial fractions such that

F(s) = 1

(s − 1)

[
A1√
s − γ1

+ Ā1√
s − γ̄1

+ A2√
s − γ2

+ Ā2√
s − γ̄2

]
. (26)

Here the overbar denotes complex conjugate, andγ1, γ̄1, γ2, γ̄2 are the roots of the equation

(x2+ 1)2− 4x + κ = 0. (27)

The coefficientsA1 andA2, which may be obtained by equating powers ofx in the partial
fraction expansion, are given in the Appendix.

The inverse Laplace transform of terms arising from the four quotients in Equation (26) is
in the form of the complex error function [11, Equations 29.3.42]:

1

(s − 1)(
√
s − a) →

1

1− a2

{
−aea

2terfc
(
−a√t

)
+ et [a + erf(

√
t)]
}

Hence the inverse transform may be written

f (t) = 2Re

2∑
i=1

Ai

{
−γieγ 2

i t
[
1+ erf

(
γi
√
t
)]
+ et

[
γi + erf

(√
t
)]}

1− γ 2
i

(28)

In terms of the original variables, we can then write the wave elevation in the closed form:

η(t)

η0
= 1− 2κRe

2∑
i=1

Ai

{
−γie(−1+γ 2

i )νk
2
2t
[
1+ erf

(
γik2

√
νt
)]
+ γi + erf

(
k2

√
νt
)}

1− γ 2
i

(29)

An approximation may be obtained whenκ is sufficiently large. The Laplace transform in
Equation (23) is then approximated by

F(σ ) = 1

σ [(σ + 2)2+ κ] . (30)
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The inverse transform is obtained from Equation 29.3.14 of Abramowitz and Stegun [11],
leading to:

f (t) =
[
1− e−2t

(
cos
√
κt + 2 sin

√
κt/
√
κ
)]

(4+ κ) . (31)

Substituting this in Equation (24) leads to the following closed form expression in terms of
the original variables:

η(t)

η0
= 1− 1

1+ 4ν2k3
2/g

[
1− e−2νk2

2t

(
cos

√
k2gt + 2νk2

2

sin
√
k2gt√
k2g

)]
(32)

Equation (32) shows that under the condition of largeκ (which corresponds to large Reynolds
number), the elevation decays in a very similar manner to an initially displaced, damped,
single degree of freedom system which is subjected to step function forcing. The equivalent
critical damping ratio is seen to be 2νk2

2/
√
k2g = 2κ−

1
2 .

We can compare the results from the deep water analysis, Equation (24), and the sub-
sequent approximation for largeκ, Equation (32), with results from the finite water depth
analysis for the stationary tank, Equation (22). First we note that for the case considered here
k2 = 2π/l = π/d. Hence with the definition of Re given following Equation (22), we have

κ = g

ν2k3
2

= Re2

π3
.

For the values Re= 2, 20, 200 considered in Figure 1, the corresponding values ofκ are 0·13,
12·9, 1290. The first of these is below the critical value stated above Equation (26), and we
will not consider it further. For the other two cases, the equivalent critical damping ratios as
defined above take the values 0·557 and 0·0557.

Figures 2a and 2b show time histories of the surface elevationζ for Re = 20 and 200,
respectively, plotted in the same way as Figure 1. The lines in the figures correspond to results
based on the finite water depth analysis, Equation (22); the complete deep water analysis,
Equation (29); and the approximate deep water analysis for largeκ or Re, Equation (32). To
evaluate Equation (29), the error function with complex argument was calculated using the
Maple V mathematical program. It can be seen that the results from the deep water analysis of
Equation (24) are indistinguishable from the complete analysis based on Equation (22); but the
approximation for largeκ is inaccurate in these two cases. The latter approximation slightly
overestimates the damping, and in the case Re= 20,κ = 12·9, it leads to a noticeable offset
at larget . (Equation (32) shows the value of this offset to be 4/(4+ κ)). Figure 2c compares
the deep water analysis of Equation (29) with the largeκ analysis for the case Re= 2000,
corresponding toκ = 129006. Here the agreement is very close, as might be expected.

4.2. AN OSCILLATING TANK

We next consider the case in which the tank undergoes the horizontal oscillation defined by

U0(t) = ωb sin ωt, (33)

whereb is the amplitude of the displacement andω is the frequency. The initial free surface
is assumed to be undisturbed,η0(x) = 0. Equations (8) and (15) give
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Figure 2. Decay of deep water solutions at different
Reynolds numbers.

Figure 3.Wave elevation history withω = 0·5ω1.
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a2n−1 = − 4ω2b

lk2
2n−1

λ2

λ2+ ω2
n = 1, 2, . . . (34)

while all the even terms are zero. Substituting this in (19), we obtain

η = −2ω2b

π iνl

∞∑
n=1

tanhk2n−1d

k2n−1

∫
0

tanhα2n−1d

C2n−1

λ2

λ2+ ω2
eλt dλ cosk2n−1(x + l/2). (35)

One special case of Equation (35) isν → 0. We can then establish that the poles of the
integrand are at

λ = ±iω2n−1 = ±i
√
gk2n−1 tanhk2n−1d n = 1, 2, . . . (36)

and

λ = ±iω.

It follows that

η = 4ω2b

l

∞∑
n=1

tanhk2n−1d

k2n−1

(
cosω2n−1t − cosωt

ω2− ω2
2n−1

)
cosk2n−1(x + l/2). (37)

If we had started the analysis withν = 0 at the beginning, the last terms in Equations (1a)
and (1b) would have been dropped and Equation (2c) should have been deleted because the
zero shear force is automatically satisfied whenν = 0. As a result, the problem can be solved
usingφ alone withAn being obtained from Equation (14b) in whichBn = 0 andν = 0. Thus

An = −an/(λ2+ kng tanhknd). (38)

If we use this with Equations (12a) and (34), andη = −φt/g, we can see that the result is
identical to (37). In fact, the same conclusion applies to Equation (22). The interesting point
here is that when viscous flow passes a rigid body the solution of the Navier-Stokes equations
does not tend to potential flow whenν → 0, if the no-slip condition is imposed. But for
the free surface flow considered in this analysis, in which the zero shear force condition is
imposed on all the surfaces, including the solid boundary, the wave elevation in viscous flow
tends to the result in inviscid flow whenν → 0. Furthermore, from Equations (13b), (16) and
(17), we can see thatAn tends to (38) andBn tends to zero asν → 0. This confirms that when
viscosity tends zero the entire flow field in this case tends to the potential flow.

Another special case of Equation (35) corresponds tot → ∞. It can be speculated that
the poles of the integrand due toC2n−1 have negative real parts. Although it is not easy to
prove this rigorously here, the physics of the problem suggests that the natural modes of
oscillation will diminish due to the viscosity. This is supported by the deep water analysis
above (the appendix showing explicitly within the region considered there that the non-zero
polesσi = −1+ γ 2

i of Equation (23) have negative real parts). Thus, ast →∞, we have to
consider only the poles atλ = ±iω in Equation (35). This yields

η = −2ω2b

νl

∞∑
n=1

tanhk2n−1d

k2n−1
Re

(
λ tanhα2n−1d

C2n−1

)
λ=iω

cosk2n−1(x + l/2). (39)

But if we let ν = 0 before takingt = ∞, Equation (35) will not tend to (39) but to (37).
Mathematically this means
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lim
t→∞ lim

ν→0
η 6= lim

ν→0
lim
t→∞ η. (40)

This behaviour is analogous to that of a single degree of freedom damped oscillator, subject
to harmonic excitation from a state of rest att = 0. It is also worth emphasising that the lower
the viscosity is the longer it will take before Equation (39) becomes valid.

Extensive results for inviscid flow have been provided in various publications [12, 13]. As
discussed above, at smallν, the result from the present analysis will be close to that from
the potential flow formulation. Thus the discussion here will focus on flow of relatively high
viscosity.

Calculations are again undertaken for a tank withl = 2d. Figure 3 gives results for the
wave elevation atx = l/2 obtained from Equations (35) and (39), for an excitation fre-
quencyω = 0·5ω1, where the natural frequency of the lowest mode is given byω1

√
d/g =√

k1d tanhk1d = 1·20. At lower Reynolds number Re= 2, Figure 3a shows that the result
from Equation (35) tends to that from Equation (39) almost immediately. At Re= 20, the
natural modes in Figure 3b still decay sharply but the steady wave amplitude is higher. At
Re= 200, the effect of the first natural mode is evident in Figure 3c, oscillating at a frequency
ω1 = 2ω. The mode will decay and the result from Equation (35) will tend to that from
Equation (39) as time increases, The case in Figure 4 is similar to that in Figure 3, with the
only difference being that the excitation frequency is set at the natural frequency, orω = ω1.
Apart from the wave having a larger amplitude, the behaviour of the results in Figures 4a
and 4b is quite similar to that in Figures 3a and 3b. Major differences can be seen, however,
between Figure 4c and Figure 3c. Based on the linearized inviscid flow, the wave elevation
will tend to infinity eventually. But here due to the effect of viscosity, the wave amplitude
will tend to a steady value. In reality the large wave in the tank will overturn and break. The
result here clearly shows that viscosity may have some important effect on wave breaking. If
the viscosity is high enough it will damp away the natural modes before the resonant wave
becomes sufficiently large to cause breaking. But this may not be relevant to a fluid like water,
because its viscosity may be too low to have a marked effect directly on the wave decay.
Figure 5 gives corresponding results for an excitation frequencyω = 1·5ω1. In Figure 5c the
contribution from the first natural mode is clearly visible; this will diminish as time increases.

5. Conclusions

The paper has obtained results which demonstrate the interaction between a free surface and
unsteady viscous flow, One particular feature noted here is that when a no-shear force condi-
tion is imposed on the boundary, the solution of the viscous flow tends to that of the potential
flow. This is different from the case where a no-slip condition is imposed on the boundary,
However, whether the no-shear force condition has any physical significance is not clear at
this stage. Further work is clearly required to resolve the issue of the boundary condition at
the intersection. In this context, the work by Somalinga and Bose [14] should be mentioned,
which appeared when this paper was being revised. The numerical results provided in the
paper are mainly at low Reynolds number, or for a highly viscous fluid; as for fluid of small
viscosity, such as water, this type of flow can be captured well by the potential flow theory.
It is clear, however, what has been achieved in this paper is quite modest. The real challenge
is when turbulence has been developed. In this case it can be expected that the interaction
between the free surface wave and viscosity will be important even for fluid of low viscosity.
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Figure 4.Wave elevation history withω = ω1. Figure 5.Wave elevation history withω = 1·5ω1.
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Appendix: Coefficients for the partial fraction expansion

The complex coefficientsA1 andA2 in Equation (26) may be written down using the properties
of the roots of Equation (27),γ1, γ2 and their conjugates. Writingγ1R = Re(γ1), γ1I =
Im(γ1) and similarly forγ2, we can obtain

ReA1 = − 2

1
γ1R, ReA2 = 2

1
γ1R, ImA1 = −2γ 3

1R + 1

γ1Rγ1I1
, ImA2 = −2γ 3

1R − 1

γ1Rγ2I1
,

where

1 = 4(6γ 2
1R + 1)(2γ 2

1R + 1)− 4(κ + 1).

Other relationships which may be found are:

|γ1|2|γ2|2 = κ + 1;

γ 2
1I = 1+ γ 2

1R −
1

γ1R
, γ 2

2I = 1+ γ 2
1R +

1

γ1R
, γ1R + γ2R = 0.

The second and third of these identities suggest that the roots of Equation (27) are complex
conjugate pairs if

1+ γ 2
1R −

1

|γ1R| > 0.

Following the standard analytical procedure for solving a cubic equation, we can establish
that this inequality leads to|γ1R| > 0·682327804. With the help of the four identities given
above it can be shown that this further leads toκ > 0·581412180. Furthermore, in support of
the comments following Equation (38), it is seen that

Re[γ 2
i − 1] = γ 2

iR − γ 2
iI − 1= −2± 1/γ1R < −0·534428768, i= 1, 2.

The rootsγ1, γ2 and the coefficientsA1 andA2 have relatively simple forms for the case
κ = 7:

γ1 = −1+ i
√

3, γ2 = 1+ i, A1 = 1

26
− i

√
3

156
, A2 = −1

26
− i

3

52
.
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